## METAL-ORGANIC COMPOUNDS

Acta Cryst. (1996). C52, 292-294

# $[PPN]_2[Cr_2(CO)_{10}]$ , a Salt of the Dimeric $Cr^{1-}$ Carbonyl Complex Without a Coordinating Counterion

INKYUNG LEE, STEVEN J. GEIB AND N. JOHN COOPER

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA

(Received 20 December 1994; accepted 31 January 1995)

#### Abstract

The  $Cr^{1-}$  carbonyl complex bis[bis(triphenylphosphine)iminium] decacarbonyldichromate(2-), [PPN]<sub>2</sub>-[Cr<sub>2</sub>(CO)<sub>10</sub>], (1), where [PPN]<sup>+</sup> is [(Ph<sub>3</sub>P)<sub>2</sub>N]<sup>+</sup>, has been prepared by naphthalenide reduction of a Cr<sup>0</sup> precursor followed by counterion metathesis to introduce a noncoordinating cation. The [Cr<sub>2</sub>(CO)<sub>10</sub>]<sup>2-</sup> dianion in (1) is structurally similar to that in a previously characterized salt with a [K(DME)<sub>2</sub>]<sup>+</sup> counterion (DME = dimethoxyethane), despite the loss of the solid-state ion pairing present in the [K(DME)<sub>2</sub>]<sup>+</sup> salt.

#### Comment

The chromium carbonyl anions [Cr(CO)<sub>5</sub>]<sup>2-</sup> and  $[Cr_2(CO)_{10}]^{2-}$  are used extensively in the preparation of substituted chromium carbonyl complexes. They have been variously produced by the reduction of [Cr(CO)<sub>6</sub>] using NaBH<sub>4</sub>/NH<sub>3(liq)</sub> (Behrens & Hagg, 1961), sodium amalgam (Hayter, 1966), Na-bipy (bipy = 2,2'-bipyridine) (Linder, Behrens & Birkle, 1968), Na/K (Ellis, 1975; Ellis, Hentges, Kalina & Hagen, 1975), KSi (Hey-Hawkins & von Schnering, 1991), or C<sub>8</sub>K (Ungurenasu & Palie, 1975) as reducing agents. Several years ago, the preparation of  $[Cr(CO)_5]^{2-}$  by alkali-metal naphthalenide reduction was reported by our group (Maher, Beatty & Cooper, 1985; Maher, Beatty, Lee & Cooper, 1986) and we now wish to report the use of this approach, followed by counterion metathesis, to prepare the binuclear complex, and also the X-ray diffraction study of the unsolvated salt  $[PPN]_2[Cr_2(CO)_{10}], (1) \{[PPN]^+ = [(Ph_3P)_2N]^+\},\$ 



©1996 International Union of Crystallography Printed in Great Britain – all rights reserved

(1) crystallizes in  $P\bar{1}$  with no crystallographically imposed symmetry. The asymmetric unit consists of one  $[Cr_2(CO)_{10}]^{2-}$  dianion and two bis(triphenylphosphine)iminium, [PPN]+, monocations. The structures of the cations are unexceptional and will not be discussed here further. The molecular structure and labeling scheme for the anion are shown in Fig. 1. It has been reported previously (Hey-Hawkins & von Schnering, 1991) that the [K(DME)<sub>2</sub>]<sup>+</sup> cation in  $[K(DME)_2]_2[Cr_2(CO)_{10}]$  bridges laterally between  $[Cr_2(CO)_{10}]^2$  anions to give polymeric onedimensional chains of [K<sub>2</sub>Cr<sub>2</sub>(CO)<sub>10</sub>] parallel to [001]. These chains must involve strong electrostatic interactions between the anions and the cations, but comparison of the reported dimensions of the  $[Cr_2(CO)_{10}]^{2-1}$ unit in the polymer with those of the discrete dianions in (1) establishes, surprisingly, that the electrostatic interactions have little effect on the structural parameters. Thus, the Cr-Cr bond in (1) has a length of 2.995(1)Å, while that in the ion-paired form is 2.999 (2) Å. The mean carbonyl C--O bond lengths in (1) [axial = 1.177 (4), equatorial = 1.154 (5) Å] are statistically indistinguishable from those in the ion-paired form [axial = 1.180(8), equatorial = 1.157(5) Å]. The differences between the Cr-C distances in (1) [axial = 1.792 (4), equatorial = 1.861 (5) Å] and those in the ionpaired form [axial = 1.802(6), equatorial = 1.879(5) Å] are more marked, but are only significant at the  $2-3\sigma$ level. We conclude that while the ion-pairing interactions in the [K(DME)<sub>2</sub>]<sup>+</sup> salt impose unusual and obvious one-dimensional order in the solid state, they do little to change the effective electron density on the metal centers and hence do not perturb the observed back donation to the carbonyl ligands.

The significant differences between the parameters of the axial and equatorial carbonyl groups in (1) are anticipated on the basis of greater back donation of



Fig. 1. View of the  $[Cr_2(CO)_{10}]^{2-}$  dianion with displacement ellipsoids shown at the 50% probability level.

electron density from the metal center to the CO ligand *trans* to the Cr—Cr bond, which shortens the Cr—C bond and lengthens the C—O bond. In both structures, the equatorial carbonyls of Cr1 are staggered relative to those of Cr2.

The structure of  $[Cr_2(CO)_{10}]^{2-}$  as the dichloromethane-solvated  $[PPN]^+$  salt was reported previously in space group C2/c with the solvated complex residing on crystallographic twofold axes (Handy, Ruff & Dahl, 1970). This structure suffered from a poorly resolved  $CH_2Cl_2$  solvate molecule, 19% decay in crystal intensity, and a lack of anisotropic displacement refinement, and a detailed comparison of bond lengths and angles with those of (1) will not, therefore, be presented here. Additionally, the structure of a molybdenum analogue of (1) has been reported previously (Bachman & Whitmire, 1993).

#### **Experimental**

Reactions were carried out under an atmosphere of  $N_2$  by means of standard Schlenk and cannula techniques. A solution of  $[Cr(CO)_5(NMe_3)]$  (Maher, Beatty, Lee & Cooper, 1986) in THF was reduced with 1 equivalent of alkalimetal naphthalenides (Li<sup>+</sup>, Na<sup>+</sup>) (Maher, Beatty & Cooper, 1985) at 195 K to give a (1:1) mixture of  $[Cr(CO)_5]^{2-}$  and  $[Cr(CO)_5(NMe_3)]$ , as determined by IR spectroscopy. Prolonged stirring (>12 h) of the resulting solution gave the binuclear carbonyl complex  $[Cr_2(CO)_{10}]^{2-}$ . Metathesis with [PPN]Cl gave the [PPN]<sup>+</sup> salt as a yellow–orange powder which was recrystallized from acetonitrile–diethyl ether at 203 K (79% yield).  $[PPN]_2[Cr_2(CO)_{10}]$  was characterized by <sup>1</sup>H, <sup>13</sup>C NMR and IR spectroscopy, and by microanalysis.

Crystal data

| •                                     |                                   | 05         | 0.  |
|---------------------------------------|-----------------------------------|------------|-----|
| $[(C_1, H_1, P), N]_2[Cr_2(CO)_1, 0]$ | Mo $K\alpha$ radiation            | C4         | 0.  |
| M = 1461.3                            | $\lambda = 0.71073$ Å             | C5         | 0   |
| $m_r = 1401.5$                        | A = 0.71075  A                    | C6         | -0. |
| Inclinic                              | Cell parameters from 25           | C7         | -0  |
| <i>P</i> 1                            | reflections                       | C8         | 0   |
| a = 12.847(2) Å                       | $\theta = 10 - 13^{\circ}$        | C9         | -0  |
| b = 15196(3) Å                        | $\mu = 0.45 \text{ mm}^{-1}$      |            | -0  |
| a = 20.570(4) Å                       | T = 203(2) K                      |            | 0   |
| c = 20.370 (4)  A                     | I = 295(2) K                      | C12        | 0.  |
| $\alpha = 94.61(2)^{\circ}$           | BIOCK                             | C14        | 0   |
| $\beta = 90.07 (2)^{\circ}$           | $0.40 \times 0.36 \times 0.36$ mm | C15        | ő   |
| $\gamma = 114.53 (2)^{\circ}$         | Orange                            | C16        | Ő.  |
| $V = 3638.8(12) \text{ Å}^3$          | -                                 | C21        | 0   |
| 7 - 2                                 |                                   | C22        | 0   |
| D = 1.22 Ma m <sup>-3</sup>           |                                   | C23        | 0   |
| $D_x = 1.55$ Wig m                    |                                   | C24        | 0   |
|                                       |                                   | C25        | 0.  |
| Data collection                       |                                   | C26        | 0   |
| Sigmons D2 diffractomator             | $P_{\rm c} = 0.0736$              | C31        | 0   |
| Siemens F 5 diffractometer            | $\Lambda_{\rm int} = 0.0750$      | C32        | 0   |
| Wyckoff scans                         | $\theta_{\rm max} = 22.55^\circ$  | C33        | 0   |
| Absorption correction:                | $h = 0 \rightarrow 13$            | C34        | 0   |
| $\psi$ scans                          | $k = -16 \rightarrow 16$          | C35        | 0   |
| $T_{\rm min} = 0.922, T_{\rm max} =$  | $l = -22 \rightarrow 22$          | C30        | 0   |
| 0.951                                 | 3 standard reflections            | C41<br>C42 | 0   |
|                                       |                                   | C42        | 0   |
| 9993 measured renections              | monitored every 197               | C43        | 0   |
| 9502 independent reflections          | reflections                       | C45        | ő   |
| 5119 observed reflections             | intensity decay: <1%              | C46        | ŏ   |
| $[I > 2\sigma(I)]$                    |                                   | C51        | 0   |
|                                       |                                   |            |     |

Refinement

| Refinement on $F^2$                     | $\Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3}$  |
|-----------------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.0390$        | $\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$ |
| $wR(F^2) = 0.0783$                      | Extinction correction:                                     |
| S = 1.001                               | SHELXL93 (Sheldrick,                                       |
| 9477 reflections                        | 1993)                                                      |
| 758 parameters                          | Extinction coefficient:                                    |
| H atoms: riding on parent C             | 0.00164 (14)                                               |
| atom with $U_{iso} = 0.08 \text{ Å}^2$  | Atomic scattering factors                                  |
| $w = 1/[\sigma^2(F_o^2) + (0.0372P)^2]$ | from International Tables                                  |
| where $P = (F_o^2 + 2F_c^2)/3$          | for Crystallography (1992)                                 |
| $(\Delta/\sigma)_{\rm max} = -0.146$    | Vol. C, Tables 4.2.6.8 and                                 |
|                                         | 6.1.1.4)                                                   |

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | v            | Z            | Uea         |
|-----|--------------|--------------|--------------|-------------|
| Crl | 0.02806 (5)  | 0.12175 (4)  | 0.74413 (3)  | 0.0485 (2)  |
| Cr2 | -0.07579 (5) | -0.09477 (4) | 0.74480 (3)  | 0.0524 (2)  |
| P1  | 0.31262 (8)  | 0.58486 (7)  | 0.57906 (5)  | 0.0402(3)   |
| P2  | 0.41604 (8)  | 0.75646 (7)  | 0.50157 (5)  | 0.0392 (3)  |
| P3  | 0.27800 (8)  | 0.56946 (7)  | 0.07307 (5)  | 0.0422 (3)  |
| P4  | 0.33883 (8)  | 0.73305 (7)  | -0.00873(5)  | 0.0417 (3)  |
| NI  | 0.3606 (2)   | 0.6490 (2)   | 0.52138 (14) | 0.0423 (8)  |
| N2  | 0.2776(2)    | 0.6272(2)    | 0.01286 (14) | 0.0485 (9)  |
| 01  | 0.1507 (3)   | 0.3347 (2)   | 0.7386 (2)   | 0.0912 (11) |
| 02  | -0.0954 (3)  | 0.0951 (2)   | 0.6142 (2)   | 0.0973 (12) |
| 03  | -0.1798(3)   | 0.1179 (3)   | 0.8132 (2)   | 0.1164 (14) |
| 04  | 0.1306 (3)   | 0.1138 (2)   | 0.8741 (2)   | 0.0808 (10) |
| 05  | 0.2299 (3)   | 0.1024 (2)   | 0.6816 (2)   | 0.0843 (10) |
| 06  | -0.1560(3)   | -0.3070(2)   | 0.7532 (2)   | 0.1113 (14) |
| 07  | -0.0022(3)   | -0.0968(2)   | 0.6051 (2)   | 0.0931 (12) |
| 08  | 0.1640 (2)   | -0.0596(2)   | 0.78714 (14) | 0.0652 (9)  |
| 09  | -0.1394(3)   | -0.0623(2)   | 0.8826 (2)   | 0.0923 (12) |
| 010 | -0.2983(3)   | -0.0943(3)   | 0.6981 (2)   | 0.1064 (13) |
| C1  | 0.0996 (4)   | 0.2505 (3)   | 0.7416 (2)   | 0.0594 (12) |
| C2  | -0.0500(4)   | 0.1014 (3)   | 0.6637 (2)   | 0.0615 (13) |
| C3  | -0.1009 (4)  | 0.1182 (3)   | 0.7863 (2)   | 0.0672 (13) |
| C4  | 0.0904 (3)   | 0.1165 (3)   | 0.8241 (2)   | 0.0530(12)  |
| C5  | 0.1490 (4)   | 0.1059 (3)   | 0.7039 (2)   | 0.0558 (12) |
| C6  | -0.1264(4)   | -0.2233(3)   | 0.7498 (2)   | 0.0735 (15) |
| C7  | -0.0307 (4)  | -0.0952(3)   | 0.6585 (2)   | 0.0603 (13) |
| C8  | 0.0726 (4)   | -0.0711 (3)  | 0.7715 (2)   | 0.0479 (11) |
| C9  | -0.1137 (4)  | -0.0725 (3)  | 0.8305 (3)   | 0.0630(13)  |
| C10 | -0.2122 (4)  | -0.0928(3)   | 0.7158 (2)   | 0.0667 (13) |
| C11 | 0.2086 (2)   | 0.4366 (2)   | 0.48327 (12) | 0.0601 (12) |
| C12 | 0.1266 (3)   | 0.3467 (2)   | 0.45820 (12) | 0.0757 (15) |
| C13 | 0.0395 (2)   | 0.2914 (2)   | 0.4972 (2)   | 0.079 (2)   |
| C14 | 0.0344 (2)   | 0.3259 (2)   | 0.5612 (2)   | 0.0760 (15) |
| C15 | 0.1165 (2)   | 0.4158 (2)   | 0.58628 (11) | 0.0623 (12) |
| C16 | 0.2036 (2)   | 0.47112 (14) | 0.54731 (13) | 0.0449 (10) |
| C21 | 0.5350 (2)   | 0.6284 (2)   | 0.61534 (13) | 0.0588 (12) |
| C22 | 0.6209 (2)   | 0.6147 (2)   | 0.6484 (2)   | 0.0821 (15) |
| C23 | 0.5934 (3)   | 0.5347 (3)   | 0.68414 (15) | 0.084 (2)   |
| C24 | 0.4800 (4)   | 0.4684 (2)   | 0.68692 (14) | 0.091 (2)   |
| C25 | 0.3941 (2)   | 0.4820 (2)   | 0.65391 (14) | 0.0691 (13) |
| C26 | 0.4216 (2)   | 0.5620 (2)   | 0.61812 (13) | 0.0430(10)  |
| C31 | 0.2902 (2)   | 0.6516 (2)   | 0.70571 (14) | 0.0557 (11) |
| C32 | 0.2451 (3)   | 0.6963 (2)   | 0.75208 (10) | 0.0664 (13) |
| C33 | 0.1600 (3)   | 0.7245 (2)   | 0.73382 (15) | 0.0663 (14) |
| C34 | 0.1200 (2)   | 0.7079 (2)   | 0.6692 (2)   | 0.0614 (12) |
| C35 | 0.1651 (2)   | 0.6632 (2)   | 0.62281 (11) | 0.0540(11)  |
| C36 | 0.2502 (2)   | 0.6350(2)    | 0.64107(12)  | 0.0394 (10) |
| C41 | 0.3952 (2)   | 0.8419 (2)   | 0.3921 (2)   | 0.080 (2)   |
| C42 | 0.3425 (3)   | 0.8439 (2)   | 0.33347 (15) | 0.103 (2)   |
| C43 | 0.2465 (3)   | 0.7630(3)    | 0.30850 (12) | 0.086 (2)   |
| C44 | 0.2033 (2)   | 0.6802(2)    | 0.3421 (2)   | 0.087(2)    |
| C45 | 0.2559 (2)   | 0.0/81 (2)   | 0.40068 (15) | 0.0005 (13) |
| C40 | 0.3519(2)    | 0.7390(2)    | 0.42300 (11) | 0.0441 (10) |
| U)I | 0.4484 (2)   | 0.8302(2)    | 0.02124(13)  | 0.0404 (10) |

## $[(C_{18}H_{15}P)_2N]_2[Cr_2(CO)_{10}]$

| C52   | 0.4248 (2) | 0.9123 (2)   | 0.67075 (10)  | 0.0606 (12) | C3-Cr1-C2          | 89.7 (2)     |
|-------|------------|--------------|---------------|-------------|--------------------|--------------|
| C53   | 0.3485 (2) | 0.9530(2)    | 0.65877 (13)  | 0.0643 (13) | C5-Cr1-C2          | 91.1 (2)     |
| C54   | 0.2957 (2) | 0.9375 (2)   | 0.5973 (2)    | 0.0615 (12) | C1-Cr1-Cr2         | 175.76 (1    |
| C55   | 0.3193 (2) | 0.8814 (2)   | 0.54778 (11)  | 0.0528 (11) | C4-Cr1-Cr2         | 82.68 (      |
| C56   | 0.3956 (2) | 0.8407 (2)   | 0.55975 (11)  | 0.0388 (9)  | C3Cr1Cr2           | 86.51 (1     |
| C61   | 0.6477 (2) | 0.8829 (2)   | 0.51810(12)   | 0.0587 (12) | C5-Cr1-Cr2         | 85.06 (1     |
| C62   | 0.7632 (2) | 0.9077 (2)   | 0.50838 (14)  | 0.0713 (14) | C2Cr1Cr2           | 86.38 ()     |
| C63   | 0.7967 (2) | 0.8448 (2)   | 0.4703 (2)    | 0.0750 (14) | C6-Cr2-C8          | 92.8 (2)     |
| C64   | 0.7147 (3) | 0.7572 (2)   | 0.44193 (14)  | 0.085 (2)   | C6-Cr2-C10         | 98.4 (2)     |
| C65   | 0.5992 (2) | 0.7324 (2)   | 0.45164 (13)  | 0.0703 (14) | C8-Cr2-C10         | 168.8 (2)    |
| C66   | 0.5657 (2) | 0.7952 (2)   | 0.48973 (13)  | 0.0399 (9)  | C6-Cr2-C7          | 96.1 (2      |
| C71   | 0.0995 (2) | 0.6117 (2)   | 0.11647 (12)  | 0.0572 (12) | C8-Cr2C7           | 88.3 (2)     |
| C72   | 0.0100 (2) | 0.6021 (2)   | 0.1573 (2)    | 0.0686 (13) | C10Cr2C7           | 89.5 (2)     |
| C73   | -0.0136(2) | 0.5413 (2)   | 0.20745 (14)  | 0.0697 (14) | C6-Cr2-C9          | 93.3 (2)     |
| C74   | 0.0523 (3) | 0.4901 (2)   | 0.21681 (11)  | 0.0647 (13) | C8-Cr2-C9          | 91.7 (2      |
| C75   | 0.1419 (2) | 0.4997 (2)   | 0.17599 (13)  | 0.0532 (11) | C10-Cr2-C9         | 88.7 (2)     |
| C76   | 0.1654 (2) | 0.5605 (2)   | 0.12582 (11)  | 0.0403 (10) | C7—Cr2—C9          | 170.6 (2)    |
| C81   | 0.2865 (2) | 0.3915 (2)   | 0.08107 (11)  | 0.0554 (11) | C6-Cr2-Cr1         | 174.59 (     |
| C82   | 0.2556 (2) | 0.2943 (2)   | 0.06049 (15)  | 0.0688 (13) | C8-Cr2Cr1          | 82.04 (      |
| C83   | 0.1898 (3) | 0.25353 (14) | 0.0032 (2)    | 0.0699 (14) | C10-Cr2-Cr1        | 86.86 (      |
| C84   | 0.1548 (2) | 0.3100 (2)   | -0.03347 (11) | 0.0693 (13) | C7-Cr2-Cr1         | 85.28 (      |
| C85   | 0.1857 (2) | 0.4073 (2)   | -0.01289 (12) | 0.0585 (12) | C9-Cr2-Cr1         | 85.41 (      |
| C86   | 0.2516 (2) | 0.44801 (14) | 0.04438 (13)  | 0.0436 (10) | N1-P1-C26          | 111.2 (2)    |
| C91   | 0,4146 (2) | 0.6756 (2)   | 0.18045 (14)  | 0.0534 (11) | N1-P1-C16          | 108.43 (     |
| C92   | 0.5181 (3) | 0.7205 (2)   | 0.21603 (12)  | 0.0733 (14) | C26-P1-C16         | 108.11 (     |
| C93   | 0.6143 (2) | 0.7095 (2)   | 0.1935 (2)    | 0.093 (2)   | D1 1 1             |              |
| C94   | 0.6070 (2) | 0.6535 (2)   | 0.1354 (2)    | 0.091 (2)   | Phenyl rings we    | re idealized |
| C95   | 0.5036 (3) | 0.6086 (2)   | 0.09978 (13)  | 0.0712 (14) | and refined as ri  | igid groups  |
| C96   | 0.4074 (2) | 0.6197 (2)   | 0.12233 (13)  | 0.0444 (10) | Data collection    | on: P3/PC    |
| C 101 | 0.5451 (2) | 0.8452 (2)   | 0.05723 (12)  | 0.0496 (11) | 1080) Program      | (c) used to  |
| C102  | 0.6124 (2) | 0.9091 (2)   | 0.10836 (14)  | 0.0581 (12) | 4.2 (Ch -14-1-1-   | 3) USCU IO   |
| C 103 | 0.5629 (2) | 0.9486 (2)   | 0.15553 (11)  | 0.0619 (13) | 4.2 (Sneldrick,    | 1990). Pro   |
| C 104 | 0.4460 (2) | 0.9242 (2)   | 0.15159 (11)  | 0.0608 (12) | SHELXL93 (She      | eldrick, 199 |
| C105  | 0.3787 (2) | 0.8604 (2)   | 0.10047 (13)  | 0.0513 (11) |                    |              |
| C 106 | 0.4282 (2) | 0.8209 (2)   | 0.05329 (11)  | 0.0386 (9)  | We themly th       | . Nationa    |
| C111  | 0.4911 (2) | 0.8193 (2)   | -0.10363 (14) | 0.0615 (12) | we mank u          | le Inationa  |
| C112  | 0.5540 (2) | 0.8178 (2)   | -0.15830 (14) | 0.0759 (14) | cial support th    | rough gra    |
| C113  | 0.5498 (2) | 0.7301 (3)   | -0.18658 (11) | 0.0780 (15) | ••                 | 00           |
| C114  | 0.4826 (3) | 0.6439 (2)   | -0.16020 (15) | 0.0720 (14) |                    |              |
| C115  | 0.4197 (2) | 0.6454 (2)   | -0.10553 (14) | 0.0576 (12) | Lists of structure | factors, an  |
| C116  | 0.4239 (2) | 0.7330 (2)   | -0.07725 (11) | 0.0452 (10) | atom coordinates   | and comple   |
| C121  | 0.2485 (2) | 0.8666 (2)   | -0.02806 (14) | 0.0758 (15) | the [DDN]+ ontion  | and unit o   |
| C122  | 0.1645 (3) | 0.8927 (2)   | -0.0513 (2)   | 0.098 (2)   |                    |              |
| C123  | 0.0651 (2) | 0.8224 (3)   | -0.08210 (15) | 0.083 (2)   | the IUCr (Referen  | ce: MU1169   |
| C124  | 0.0496 (2) | 0.7260 (2)   | -0.08973 (14) | 0.0781 (15) | Managing Editor,   | Internationa |
| C125  | 0.1335 (2) | 0.6999 (2)   | -0.06653 (14) | 0.0636 (12) | Square, Chester C  | H1 2HU, E    |
| C126  | 0.2330 (2) | 0.7702 (2)   | -0.03570 (13) | 0.0450 (10) | -                  |              |
|       |            |              |               |             |                    |              |

### Table 2. Selected geometric parameters (Å, °)

| Table 2. Selected geometric parameters (A, °) |             | rs (A, °)  | References  |                                                                       |
|-----------------------------------------------|-------------|------------|-------------|-----------------------------------------------------------------------|
| Cr1—C1                                        | 1.789 (4)   | P3—N2      | 1.575 (3)   | Destance D. E. & Williamine K. H. (1002) Asta Const. C40, 207, 209    |
| Cr1-C4                                        | 1.850 (5)   | P3-C76     | 1.775 (2)   | Bachman, R. E. & Whitmire, K. H. (1995). Acta Cryst. C49, 527-526.    |
| Cr1—C3                                        | 1.854 (5)   | P3         | 1.782 (2)   | Behrens, H. & Hagg, W. (1961). Chem. Ber. 94, 312-319.                |
| Cr1—C5                                        | 1.855 (5)   | P3-C96     | 1.786 (2)   | Ellis, J. E. (1975). J. Organomet. Chem. 86, 1–56.                    |
| Cr1—C2                                        | 1.869 (5)   | P4—N2      | 1.571 (3)   | Ellis, J. E., Hentges, S. G., Kalina, D. G. & Hagen, G. P. (1975). J. |
| Cr1—Cr2                                       | 2.9947 (11) | P4-C126    | 1.778 (2)   | Organomet. Chem. 97, 79–93.                                           |
| Cr2—C6                                        | 1.796 (5)   | P4-C106    | 1.783 (2)   | Handy, L. B., Ruff, J. K. & Dahl, L. F. (1970). J. Am. Chem. Soc.     |
| Cr2-C8                                        | 1.860 (5)   | P4-C116    | 1.785 (2)   | 92. 7312-7326.                                                        |
| Cr2-C10                                       | 1.863 (5)   | 01—C1      | 1.178 (4)   | Havter R G (1966) I Am Chem Soc 88 4376-4382                          |
| Cr2C7                                         | 1.868 (5)   | O2—C2      | 1.151 (5)   | Hay Hawkins E & yon Schnering H G (1001) Chem Ber 124                 |
| Cr2C9                                         | 1.871 (5)   | O3—C3      | 1.154 (5)   | 1167 1160                                                             |
| P1N1                                          | 1.558 (3)   | 04—C4      | 1.162 (4)   | 1107-1109.                                                            |
| P1-C26                                        | 1.781 (2)   | 05—C5      | 1.155 (4)   | Linder, E., Benrens, H. & Birkle, S. (1908). J. Organomel. Chem. 15,  |
| P1-C16                                        | 1.784 (2)   | O6C6       | 1.176 (4)   | 165–175.                                                              |
| P1-C36                                        | 1.790 (2)   | 07—C7      | 1.160 (5)   | Maher, J. M., Beatty, R. P. & Cooper, N. J. (1985). Organometallics,  |
| P2N1                                          | 1.575 (3)   | O8—C8      | 1.155 (4)   | 4, 1354–1361.                                                         |
| P2-C46                                        | 1.775 (2)   | 09С9       | 1.139 (5)   | Maher, J. M., Beatty, R. P., Lee, G. R. & Cooper, N. J. (1986).       |
| P2-C56                                        | 1.782 (2)   | O10-C10    | 1.155 (5)   | Organomet. Synth. 3, 35-39.                                           |
| P2C66                                         | 1.785 (2)   |            |             | Sheldrick, G. M. (1990), Acta Cryst. A46, 467–473.                    |
| C1-Cr1-C4                                     | 96.7 (2)    | N1-P1-C36  | 114.68 (14) | Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of      |
| C1—Cr1—C3                                     | 97.7 (2)    | C26—P1—C36 | 107.07 (14) | Crystal Structures University of Göttingen Germany                    |
| C4-Cr1-C3                                     | 88.6 (2)    | C16—P1—C36 | 107.12 (13) | Sigmons (1080) P3/PC Diffractometer Program Version 313               |
| C1—Cr1—C5                                     | 90.7 (2)    | N1-P2-C46  | 108.0 (2)   | Sichichis (1989). I She Dijjracioniciel Program. Version 5.15.        |
| C4-Cr1-C5                                     | 89.0 (2)    | N1-P2-C56  | 113.05 (14) | Siemens Analytical A-ray instruments inc., Madison, Wisconsin,        |
| C3-Cr1-C5                                     | 171.5 (2)   | C46—P2—C56 | 108.49 (14) | USA.                                                                  |
| C1-Cr1-C2                                     | 94.2 (2)    | N1-P2-C66  | 110.97 (15) | Ungurenasu, C. & Palie, M. (1975). J. Chem. Soc. Chem. Commun.        |
| C4-Cr1-C2                                     | 169.0 (2)   | C46-P2-C66 | 107.12 (13) | рр. 388.                                                              |

| 89.7 (2)    | C56—P2—C66   | 108.97 (13) |
|-------------|--------------|-------------|
| 91.1 (2)    | N2-P3-C76    | 111.4 (2)   |
| 175.76 (13) | N2-P3-C86    | 108.90 (15) |
| 82.68 (12)  | C76—P3—C86   | 105.98 (12) |
| 86.51 (14)  | N2P3C96      | 115.05 (14) |
| 85.06 (12)  | C76—P3C96    | 106.71 (14) |
| 86.38 (13)  | C86—P3—C96   | 108.33 (14) |
| 92.8 (2)    | N2-P4-C126   | 108.8 (2)   |
| 98.4 (2)    | N2-P4-C106   | 114.55 (14) |
| 168.8 (2)   | C126-P4-C106 | 108.88 (14) |
| 96.1 (2)    | N2-P4-C116   | 109.6 (2)   |
| 88.3 (2)    | C126—P4—C116 | 106.45 (13) |
| 89.5 (2)    | C106-P4-C116 | 108.27 (13) |
| 93.3 (2)    | P1-N1-P2     | 144.5 (2)   |
| 91.7 (2)    | P4-N2-P3     | 138.9 (2)   |
| 88.7 (2)    | 01Cr1        | 176.9 (4)   |
| 170.6 (2)   | 02-C2-Cr1    | 175.6 (4)   |
| 174.59 (14) | 03C3Crl      | 178.6 (4)   |
| 82.04 (12)  | 04-C4-Cr1    | 179.3 (3)   |
| 86.86 (13)  | 05C5Cr1      | 174.8 (4)   |
| 85.28 (13)  | 06C6Cr2      | 177.8 (4)   |
| 85.41 (14)  | 07C7Cr2      | 178.8 (4)   |
| 111.2 (2)   | 08-C8-Cr2    | 177.6 (4)   |
| 108.43 (15) | 09-C9-Cr2    | 177.6 (4)   |
| 108.11 (13) | 010-C10-Cr2  | 178.0 (4)   |

d as hexagons with C-C = 1.39 Å

Diffractometer Program (Siemens, solve structure: SHELXTL, version ogram(s) used to refine structure: 93).

al Science Foundation for finan-Int CHE-9113808.

isotropic displacement parameters, Hete geometry, along with drawings of ell contents have been deposited with )). Copies may be obtained through The al Union of Crystallography, 5 Abbey ngland.